What makes sugar explode?

Imagine you are at the breakfast table and about to put some cereal in the milk. Now as you reach for the sugar from the bowl, the spoon clinks against the bowl and – BOOM? Sounds impossible? Could be. Read on to find out more.

The fact
Sugar (the chemical name is D(+)-Sucrose) won’t really end your breakfast with a bang, but
what’s crazy is that sugar actually can be dangerous; not to the consumer, but to the people who operate the refinery. That’s the place where sugar is prepared and packaged.

The little-known danger associated with refining sugar came suddenly into focus on Feb. 7, 2008, when the Imperial Sugar Company refinery in Port Wentworth, Ga., suddenly exploded. Fire officials believe that an accumulation of sugar dust within the refinery ignited and caused the incident. Sugar dust? How exactly can sugar explode? Let’s solve the mystery.

Sugar: A Natural Explosive
Though you may not normally think about it, one of sugar’s properties is that it is
flammable – means it can catch fire. A flaming marshmallow is a good example of burning sugar.

Any organic material can burn. But for an explosion to take place, especially in the case of volatile dusts like sugar, a few other factors must be involved.

Imagine you’re in an enclosed room coated with a thick layer of sugar dust. You smack your hand down on a table top, disturbing some of the sugar dust and dispersing it into the air. If you are unwise enough to light a match, and you could see the ensuing explosion in slow motion, you’d notice that what appears to be a single, instantaneous burst is actually a series of chain reactions. The sugar dust particle ignited by your lit match ignites another particle and so on. The entire process is fueled by the oxygen in the room, and since the dust is suspended in the air, it interacts with the oxygen more easily than when it’s settled on the table. This is also why marshmallows don’t explode; the D(+)-Sucrose inside the dense confection doesn’t have much oxygen to interact with.

The force of the blast depends on the enclosed room. The chain reaction produced from the ignited sugar dust particles produces energy. This produces compression and expands the volume of the air. When this buildup occurs faster than the flame burns – as can be the case indoors – you have an explosion. The first explosion is called the primary explosion, and the force created by a primary explosion can unsettle even more sugar dust, causing a secondary explosion. The two can happen in quick succession, and the second blast is often the more powerful. First a boom, then a KABOOM!

So even though now you can eat your breakfast in peace, remember that even something as minute as sugar dust can be dangerous. So be safe.